Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Thermo-Mechanical Model of Solidification Processes
Details
Many manufacturing and fabrication processes such as
foundry shape casting, continuous casting and welding
have common solidification phenomena, such as thermal
stress development.
One of the most important and complex among them is
continuous casting which produces 90% of steel today.
A new computationally efficient algorithm has been
implemented into the commercial package Abaqus using
a user-defined subroutine (UMAT) to solve for thermal
stresses, strains, and displacements in realistic
continuous casting processes which involve highly
nonlinear constitutive relations. The model is
successfully validated with available analytical
solidification solutions and applied to simulate
temperature and stress development of a solidifying
steel shell in several continuous casting molds under
realistic operating conditions. Besides continuous
casting, the model from this book can be a valuable
tool in modeling other classes of metal
and nonmetal materials with highly nonlinear
time-dependant constitutive laws.
Autorentext
Seid Koric received his Ph.D. in Mechanical and Industrial
Engineering from the University of Illinois in 2006. He is
currently a computational coordinator at NCSA.
Brian G. Thomas received his Ph.D in Metallurgical Process
Engineering, University of British Columbia, 1985. He has been a
faculty member at the University of Illinois since 1985.
Klappentext
Many manufacturing and fabrication processes such as
foundry shape casting, continuous casting and welding
have common solidification phenomena, such as thermal
stress development.
One of the most important and complex among them is
continuous casting which produces 90% of steel today.
A new computationally efficient algorithm has been
implemented into the commercial package Abaqus using
a user-defined subroutine (UMAT) to solve for thermal
stresses, strains, and displacements in realistic
continuous casting processes which involve highly
nonlinear constitutive relations. The model is
successfully validated with available analytical
solidification solutions and applied to simulate
temperature and stress development of a solidifying
steel shell in several continuous casting molds under
realistic operating conditions. Besides continuous
casting, the model from this book can be a valuable
tool in modeling other classes of metal
and nonmetal materials with highly nonlinear
time-dependant constitutive laws.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639160062
- Sprache Englisch
- Genre Technik
- Anzahl Seiten 176
- Größe H9mm x B220mm x T150mm
- Jahr 2009
- EAN 9783639160062
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-16006-2
- Titel Thermo-Mechanical Model of Solidification Processes
- Autor Seid Koric
- Untertitel Implementation in Abaqus and Application to Continuous Casting of Steel
- Gewicht 242g
- Herausgeber VDM Verlag Dr. Müller e.K.