Theta-Divisor

CHF 42.80
Auf Lager
SKU
CLRD3V0THSI
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, the theta-divisor is the divisor in the sense of algebraic geometry defined on an abelian variety A over the complex numbers (and principally polarized) by the zero locus of the associated Riemann theta-function. It is therefore an algebraic subvariety of A of dimension dim A 1. Classical results of Bernhard Riemann describe in another way, in the case that A is the Jacobian variety J of an algebraic curve (compact Riemann surface) C. There is, for a choice of base point P on C, a standard mapping of C to J, by means of the interpretation of J as the linear equivalence classes of divisors on C of degree 0. That is, Q on C maps to the class of Q P. Then since J is an algebraic group, C may be added to itself k times on J, giving rise to subvarieties Wk. If g is the genus of C, Riemann proved that is a translate on J of Wg 1. He also described which points on Wg 1 are non-singular: they correspond to the effective divisors D of degree g 1 with no associated meromorphic functions other than constants.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131148613
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131148613
    • Format Fachbuch
    • Titel Theta-Divisor
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 92
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38