Thin Group

CHF 48.65
Auf Lager
SKU
QSGGVBAH775
Stock 1 Verfügbar
Geliefert zwischen Fr., 13.02.2026 und Mo., 16.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, in the realm of group theory, a group is said to be thin if there is a finite upper bound on the girth of the Cayley graph induced by any finite generating set. The group is called fat if it is not thin. Given any generating set of the group, we can consider a graph whose vertices are elements of the group with two vertices adjacent if their ratio is in the generating set. The graph is connected and vertex transitive. paths in the graph correspond to words in the generators. If the graph has a cycle of a given length, it has a cycle of the same length containing the identity element. Thus, the girth of the graph corresponds to the minimum length of a nontrivial word that reduces to the identity. A nontrivial word is a word that, if viewed as a word in the free group, does not reduce to the identity. If the graph has no cycles, its girth is set to be infinity.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131148729
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131148729
    • Format Fachbuch
    • Titel Thin Group
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 112
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38