Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Thin Set (Serre)
CHF 33.90
Auf Lager
SKU
4FC5C5QLON1
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025
Details
High Quality Content by WIKIPEDIA articles! In mathematics, a thin set in the sense of Serre, named after Jean-Pierre Serre, is a certain kind of subset constructed in algebraic geometry over a given field K, by allowed operations that are in a definite sense 'unlikely'. The two fundamental ones are: solving a polynomial equation that may or may not be the case; solving within K a polynomial that does not always factorise. One is also allowed to take finite unions. More precisely, let V be an algebraic variety over K (assumptions here are: V is an irreducible set, a quasi-projective variety, and K has characteristic zero). A type I thin set is a subset of V(K) that is not Zariski-dense. That means it lies in an algebraic set that is a finite union of algebraic varieties of dimension lower than d, the dimension of V. A type II thin set is an image of an algebraic morphism (essentially a polynomial mapping) , applied to the K-points of some other d-dimensional algebraic variety V , that maps essentially onto V as a ramified covering with degree e 1.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131140631
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131140631
- Titel Thin Set (Serre)
- Herausgeber Betascript Publishing
- Anzahl Seiten 72
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung