Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Thoracic Image Analysis
Details
This book constitutes the proceedings of the Second International Workshop on Thoracic Image Analysis, TIA 2020, held in Lima, Peru, in October 2020. Due to COVID-19 pandemic the conference was held virtually. COVID-19 infection has brought a lot of attention to lung imaging and the role of CT imaging in the diagnostic workflow of COVID-19 suspects is an important topic.
The 14 full papers presented deal with all aspects of image analysis of thoracic data, including: image acquisition and reconstruction, segmentation, registration, quantification, visualization, validation, population-based modeling, biophysical modeling (computational anatomy), deep learning, image analysis in small animals, outcome-based research and novel infectious disease applications.
Inhalt
Multi-cavity Heart Segmentation in Non-contrast Non-ECG Gated CT Scans with F-CNN.- 3D Deep Convolutional Neural Network-based Ventilated Lung Segmentation using Multi-nuclear Hyperpolarized Gas MRI.- Lung Cancer Tumor Region Segmentation Using Recurrent 3D-DenseUNet.- 3D Probabilistic Segmentation and Volumetry from 2D Projection Images.- CovidDiagnosis: Deep Diagnosis of Covid-19 Patients using Chest X-rays.- Can We Trust Deep Learning Based Diagnosis? The Impact of Domain Shift in Chest Radiograph Classification.- A Weakly Supervised Deep Learning Framework for COVID-19 CT Detection and Analysis.- Deep Reinforcement Learning for Localization of the Aortic Annulus in Patients with Aortic Dissection.- Functional-Consistent CycleGAN for CT to Iodine Perfusion Map Translation.- MRI to CTA Translation for Pulmonary Artery Evaluation using CycleGANs Trained with Unpaired Data.- Semi-supervised Virtual Regression of Aortic Dissections Using 3D Generative Inpainting.- Registration-Invariant Biomechanical Features for Disease Staging of COPD in SPIROMICS.- Deep Group-wise Variational Diffeomorphic Image Registration.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030624682
- Auflage 1st edition 2020
- Editor Jens Petersen, Raúl San José Estépar, Alexander Schmidt-Richberg, Kensaku Mori, Bianca Lassen-Schmidt, Colin Jacobs, Reinhard Beichel, Sarah Gerard
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T10mm
- Jahr 2020
- EAN 9783030624682
- Format Kartonierter Einband
- ISBN 3030624684
- Veröffentlichung 04.11.2020
- Titel Thoracic Image Analysis
- Untertitel Second International Workshop, TIA 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings
- Gewicht 277g
- Herausgeber Springer International Publishing
- Anzahl Seiten 176
- Lesemotiv Verstehen