Tiling by Regular Polygons

CHF 43.15
Auf Lager
SKU
M37E10BK7N9
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Plane tilings by regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in Harmonices Mundi. Following Grünbaum and Shephard (section 1.3), a tiling is said to be regular if the symmetry group of the tiling acts transitively on the flags of the tiling, where a flag is a triple consisting of a mutually incident vertex, edge and tile of the tiling. This means that for every pair of flags there is a symmetry operation mapping the first flag to the second. This is equivalent to the tiling being an edge-to-edge tiling by congruent regular polygons. There must be six equilateral triangles, four squares or three regular hexagons at a vertex, yielding the three regular tessellations.

Klappentext

High Quality Content by WIKIPEDIA articles! Plane tilings by regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in Harmonices Mundi. Following Grünbaum and Shephard (section 1.3), a tiling is said to be regular if the symmetry group of the tiling acts transitively on the flags of the tiling, where a flag is a triple consisting of a mutually incident vertex, edge and tile of the tiling. This means that for every pair of flags there is a symmetry operation mapping the first flag to the second. This is equivalent to the tiling being an edge-to-edge tiling by congruent regular polygons. There must be six equilateral triangles, four squares or three regular hexagons at a vertex, yielding the three regular tessellations.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130316693
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Genre Technik
    • Anzahl Seiten 76
    • Größe H220mm x B220mm
    • Jahr 2009
    • EAN 9786130316693
    • Format Kartonierter Einband
    • ISBN 978-613-0-31669-3
    • Titel Tiling by Regular Polygons
    • Untertitel Tessellation, Regular Polygon, Johannes Kepler, Harmonices Mundi, Branko Grünbaum, Symmetry group, Group Action, Equilateral Triangle, Isogonal Figure
    • Herausgeber Betascript Publishers

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38