Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Tomography of the Earth's Crust: From Geophysical Sounding to Real-Time Monitoring
Details
Based on the GEOTECHNOLOGIEN program, this book explores cross-scale multi-parameter methods for Earth measurement. The editors develop and optimize seismic wave field inversion theory, diffusion and potential methods, these with respect to cost and benefits.
The research work on the topic of ''Tomography of the Earth's Crust: From Geophysical Sounding to Real-Time Monitoring'' has focused on the development of cross-scale multiparameter methods and their technological application together with the development of innovative field techniques. Seismic wave field inversion theory, diffusion and potential methods were developed and optimized with respect to cost and benefit aspects.This volume summarizes the scientific results of nine interdisciplinary joint projects funded by the German Federal Ministry of Education and Research in the framework of the Research and Development Program GEOTECHNOLOGIEN.Highlights and innovations presented cover many length scales and involve targets ranging from applications in the laboratory, to ground water surveys of heterogeneous aquifer, geotechnical applications like tunnel excavation, coal mine and CO2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes.To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D.Geophysical Sounding to Real-Time Monitoring'' has focused on the development of cross-scale multiparameter methods and their technological application together with the development of innovative field techniques. Seismic wave field inversion theory, diffusion and potential methods were developed and optimized with respect to cost and benefit aspects.This volume summarizes the scientific results of nine interdisciplinary joint projects funded by the German FederalMinistry of Education and Research in the framework of the Research and Development Program GEOTECHNOLOGIEN.Highlights and innovations presented cover many length scales and involve targets ranging from applications in the laboratory, to ground water surveys of heterogeneous aquifer, geotechnical applications like tunnel excavation, coal mine and CO2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes.To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D.2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes.To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D.
Offers a combination of different tomographic methods Presents new findings on real-time monitoring of underground structures Includes sample applications Includes supplementary material: sn.pub/extras
Autorentext
Dipl.-Forstwirt Dr. Michael Weber, Lehrstuhl für Waldbau und Forsteinrichtung, München.
Inhalt
4D Spectral Electrical Impedance Tomography (EIT) a diagnostic imaging tool for the characterization of subsurface structures and processes (4D-EIT).- From Airborne Data Inversion to In-Depth Analysis (AIDA).- Monitoring and Imaging based on Interferometric Concepts (MIIC).- Mining Environments: Continuous Monitoring and Simultaneous Inversion (MINE).- Three-dimensional Multi-Scale and Multi-Method Inversion to Determine the Electrical Conductivity Distribution of the Subsurface Using Parallel Computing Architectures (Multi-EM).- Multi-Scale S-Wave Tomography for Exploration and Risk Assessment of Development Sites (MuSaWa).- Seismic Observations for Underground Development (SOUND).- Toolbox for Applied Seismic Tomography (TOAST).- Tomographic Methods in Hydrogeology (TOMOME).
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 188
- Herausgeber Springer International Publishing
- Gewicht 453g
- Untertitel GEOTECHNOLOGIEN Science Report No. 21
- Titel Tomography of the Earth's Crust: From Geophysical Sounding to Real-Time Monitoring
- Veröffentlichung 28.02.2014
- ISBN 3319042041
- Format Fester Einband
- EAN 9783319042046
- Jahr 2014
- Größe H241mm x B160mm x T16mm
- Lesemotiv Verstehen
- Editor Ute Münch, Michael Weber
- Auflage 2014
- GTIN 09783319042046