Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Topic Detection and Classification in Social Networks
Details
Provides a language-agnostic method for social media text analysis, which is not based on a specific grammar, semantics or machine learning techniques
Detects topics from large text documents and extracts the main opinion without any human intervention
Compares a variety of techniques and provides a smooth transition from theory to practice with multiple experiments and results
Autorentext
Dr. Dimitrios Milioris is a research associate and lecturer at the Massachusetts Institute of Technology (MIT). He received his Ph.D. from École Polytechnique Paris (2015, honors) while a scholar at Columbia University, New York, USA, as an Alliance Program awardee (2013 2014). He received his double M.Sc. degree (2011, first in class, honors) in computer science & applied mathematics from Paris XI University and the École Polytechnique, and his B.Sc. degree (2009, honors) in computer science from the University of Crete, Greece. Prior to joining MIT, he was a researcher at Bell Labs, Alcatel-Lucent in Paris, France, and a member of the Mathematics of Dynamic & Complex Networks Department. Prior to joining Bell Labs, he served as a research assistant at the Institute of Computer Science (ICS) of the Foundation for Research and Technology Hellas (FO.R.T.H.), and as a research engineer with the Hipercom Team at the National Institute for Research in Computer Science and Automatic Control (I.N.R.I.A.), followed by a compulsory military service in Telecommunications Division.
Inhalt
Introduction.- Background and Related Work.- Joint Sequence Complexity.- Text Classification via Compressive Sensing.- Extension of Joint Complexity and Compressive Sensing.- Conclusion.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319664132
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Auflage 1st ed. 2018
- Sprache Englisch
- Anzahl Seiten 105
- Herausgeber Springer-Verlag GmbH
- Größe H235mm x B155mm
- Jahr 2017
- EAN 9783319664132
- Format Fester Einband
- ISBN 978-3-319-66413-2
- Veröffentlichung 13.10.2017
- Titel Topic Detection and Classification in Social Networks
- Autor Dimitrios Milioris
- Untertitel The Twitter Case
- Gewicht 387g