Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Topics in Differential Geometry
Details
We consider a Lorentz transformation in which the moving frame moves with uniform velocity in an arbitrary direction. Transformation matrix for such a transformation is found in the book of Misner et al and also that of Weinberg. We use this matrix to show that the volume element and a differential operator are invariant. We use these in turn to define other differential operators in an invariant manner. These operators are used in the study of electromagnetism. Another topic that may find application to topics in physical sciences is Irrotational vectorfields on a Surface in Euclidean space . It is shown that parallel surfaces preserve such a vectorfield and also that every real valued differentiable function on a sphere generates an irrotational vectorfield. A change of metric of a 2-dimensional Riemannian manifold leads to an invariant tensorfield, the vanishing of which leads to the conclusion that the geometrical object represented by the manifold is a torus. A parametric hyper-helicoid with Weierstrass type representation is another significant topic discussed in some detail.
Autorentext
Krishna Amur: Professor in Karnatak University, Dharwad, India from 1970 to 1991. Studied at Purdue University as Fulbright student and at North Carolina University on Indo-American Fellowship. Christopher R servers as Associate Professor in PC Jabin College, Hubli, India. Keshav S Naik serves as Associate Professor at GSS College, Belgaum, India.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783848400348
- Sprache Englisch
- Auflage Aufl.
- Größe H220mm x B220mm
- Jahr 2012
- EAN 9783848400348
- Format Kartonierter Einband (Kt)
- ISBN 978-3-8484-0034-8
- Titel Topics in Differential Geometry
- Autor Krishna Amur , R Christopher , Keshav Naik
- Untertitel Including an application to Special Relativity
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 136
- Genre Mathematik