Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Topics in Structural VAR Econometrics
Details
In recent years a growing interest in the structural V AR approach (SV AR) has followed the path-breaking works by Blanchard and Watson (1986), Bernanke (1986) and Sims (1986), especially in the U.S. applied macroeconometric literature. The approach can be used in two different, partially overlapping, directions: the interpretation of business cycle fluctuations of a small number of significant macroeconomic variables and the identification of the effects of different policies. SV AR literature shows a common feature: the attempt to "organise", in a "structural" theoretical sense, instantaneous correlations among the relevant variables. In non-structural V AR modelling, instead, correlations are normally hidden in the variance covariance matrix of the V AR model innovations. of independent V AR analysis tries to isolate ("identify") a set shocks by means of a number of meaningful theoretical restrictions. The shocks can be regarded as the ultimate source of stochastic variation of the vector of variables which can all be seen as potentially endogenous. Looking at the development of SV AR literature we felt that it still lacked a formal general framework which could embrace the several types of models so far proposed for identification and estimation. This is the second edition of the book, which originally appeared as number 381 of the Springer series "Lecture notes in Economics of the first edition was Carlo and Mathematical Systems". The author Giannini.
Klappentext
This book provides a new approach to the identification and the estimation of structural VAR models. The role of deterministic variables and the connection with the concept of cointegration is discussed at length. The book also provides criteria to select among alternative structures. In addition, the asymptotic distributions of the structural estimates of impulse response functions and forecast error variance decomposition coefficients are obtained and used to construct asymptotically based confidence intervals around the maximum likelihood estimates. Moreover, the book contains a critical evaluation of the problem of non-fundamental representations and of their relevance on the interpretability of the results of structural VAR analysis. Finally, the book contains applied examples.
Inhalt
l: From VAR models to Structural VAR models.- 1.1. Origins of VAR modelling.- 1.2. Basic concepts of VAR analysis.- 1.3. Efficient estimation: the BVAR approach.- 1.4. Uses of VAR models.- 1.5. Different classes of Structural VAR models.- 1.6. The likelihood function for SVAR models.- 1.7. Structural VAR models vs. dynamic simultaneous equations models.- 1.8. Some examples of Structural VARs in the applied literature.- 2: Identification analysis and F.I.M.L. estimation for the K-Model.- 2.1. Identification analysis.- 2.2. F.I.M.L. estimation.- 3: Identification analysis and F.I.M.L. estimation for the C-Model.- 3.1. Identification analysis.- 3.2. F.I.M.L. estimation.- 4: Identification analysis and F.I.M.L. estimation for the AB-Model.- 4.1. Identification analysis.- 4.2. F.I.M.L. estimation.- 5: Impulse response analysis and forecast error variance decomposition in SVAR modeling.- 5.1. Impulse response analysis.- 5.2. Variance decomposition (by Antonio Lanzarotti).- 5.3. Finite sample and asymptotic distributions for dynamic simulations.- 6: Long run a priori information. Deterministic components. Cointegration.- 6.1. Long run a priori information.- 6.2. Deterministic components.- 6.3. Cointegration.- 7: Model selection in Structural VAR analysis.- 7.1. General aspects of the model selection problem.- 7.2. The dominance ordering criterion.- 7.3. The likelihood dominance criterion (LDC).- 8: The problem of non fundamental representations.- 8.1. Non fundamental representations in time series models.- 8.2. Economic significance of non fundamental representations and examples.- 8.3. Non fundamental representations and applied SVAR analysis.- 8.4. An example.- 9: Two applications of Structural VAR analysis.- 9.1. A traditional interpretation of Italian macroeconomic fluctuations.- 9.2. The transmission mechanism among Italian interest rates.- Annex 1: The notions of reduced form and structure in Structural VAR modelling.- Annex 2: Some considerations on the semantics, choice and management of the K, C, and AB-models.- Appendix A.- Appendix B.- Appendix C (by Antonio Lanzarotti and Mario Seghelini).- References.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642644818
- Auflage Second Edition 1997
- Sprache Englisch
- Genre Volkswirtschaft
- Größe H235mm x B155mm x T12mm
- Jahr 2011
- EAN 9783642644818
- Format Kartonierter Einband
- ISBN 3642644813
- Veröffentlichung 18.09.2011
- Titel Topics in Structural VAR Econometrics
- Autor Gianni Amisano , Carlo Giannini
- Gewicht 312g
- Herausgeber Springer
- Anzahl Seiten 200
- Lesemotiv Verstehen