Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Topological Insulators
Details
The first of its kind on the topic, this book presents a unified description of topological insulators in one, two and three dimensions based on the modified Dirac equation. Discusses topological invariants and their applications to a variety of systems.
This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field.
To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already become a new hotpot of research in the community.
Gives an up-to-date overview of the studies in the hot field of topological insulators Presents a unified description of topological insulators, superconductors and Weyl semimetals from one to three dimensions based on the modified Dirac equation Serves as a starting point for newcomers or students to enter the field of topological insulators Includes supplementary material: sn.pub/extras Includes supplementary material: sn.pub/extras
Autorentext
Professor Shun-Qing Shen , an expert in the field of condensed matter physics, is distinguished for his research works on topological quantum materials, spintronics of semiconductors, quantum magnetism and orbital physics in transition metal oxides, and novel quantum states of condensed matter. He proposed topological Anderson insulator, theory of weak localization and antilocalization for Dirac fermions, spin transverse force, resonant spin Hall effect and the theory of phase separation in colossal magnetoresistive (CMR) materials. He proved the existence of antiferromagnetic long-range order and off-diagonal long-range order in itinerant electron systems.
Professor Shun-Qing Shen has been a professor of physics at The University of Hong Kong since July 2007. Professor Shen received his BS, MS, and PhD in theoretical physics from Fudan University in Shanghai. He was a postdoctorial fellow (1992 1995) in China Center of Advanced Science and Technology (CCAST),Beijing, Alexander von Humboldt fellow (1995 1997) in Max Planck Institute for Physics of Complex Systems, Dresden, Germany, and JSPS research fellow (1997) in Tokyo Institute of Technology, Japan. In December 1997 he joined Department of Physics, The University of Hong Kong. He was awarded Croucher Senior Research Fellowship (The Croucher Award) in 2010.
Klappentext
This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field.
To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic thathas attracted considerable attention and has already become a new hotpot of research in the community.
Inhalt
Introduction.- Starting from the Dirac equation.- Minimal lattice model for topological insulator.- Topological invariants.- Topological phases in one dimension.- Quantum anomalous Hall effect and Quantum spin Hall effect.- Three-dimensional topological insulators.- Impurities and defects in topological insulators.- Topological superconductors and superfluids.- Majorana fermions in topological insulators.- Topological Dirac and Weyl Semimetals.- Topological Anderson Insulator.- Summary: Symmetry and Topological Classification.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811046056
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Auflage 2nd edition 2017
- Sprache Englisch
- Anzahl Seiten 280
- Herausgeber Springer Nature Singapore
- Größe H241mm x B160mm x T21mm
- Jahr 2017
- EAN 9789811046056
- Format Fester Einband
- ISBN 9811046050
- Veröffentlichung 05.09.2017
- Titel Topological Insulators
- Autor Shun-Qing Shen
- Untertitel Dirac Equation in Condensed Matter
- Gewicht 588g