Toroidal Graph

CHF 42.60
Auf Lager
SKU
OKKJTAEP75O
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, a graph G is toroidal if it can be embedded on the torus. In other words, the graph''s vertices can be placed on a torus such that no edges cross. Usually, it is assumed that G is also non-planar.The Heawood graph, the complete graph K7 (and hence K5 and K6), the Petersen graph (and hence the complete bipartite graph K3,3, since the Petersen graph contains a subdivision of it), the Blanu a snarks, (Orbani et al. 2004) and all Möbius ladders are toroidal. More generally, any graph with crossing number 1 is toroidal. Some graphs with greater crossing numbers are also toroidal: the Möbius Kantor graph, for example, has crossing number 4 and is toroidal (Maru i & Pisanski 2000).

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131238239
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131238239
    • Format Fachbuch
    • Titel Toroidal Graph
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38