Torsion (Algebra)

CHF 43.15
Auf Lager
SKU
GUTA7EHO1CT
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! In abstract algebra, the term torsion refers to a number of concepts related to elements of finite order in groups and to the failure of modules to be free. Let G be a group. An element g of G is called a torsion element if g has finite order. If all elements of G are torsion, then G is called a torsion group. If the only torsion element is the identity element, then the group G is called torsion-free. Let M be a module over a ring R without zero divisors. An element m of M is called a torsion element if the cyclic submodule of M generated by m is not free. Equivalently, m is torsion if and only if it has a non-zero annihilator in R. If the ring R is commutative, then the set of all torsion elements forms a submodule of M, called the torsion submodule of M, sometimes denoted T(M). The module M is called a torsion module if T(M) = M, and is called torsion-free if T(M) = 0. If the ring R is non-commutative then the situation is more complicated, and the set of torsion elements need not be a submodule. Nevertheless, it is a submodule given the assumption that the ring R satisfies the Ore condition. This covers the case when R is a Noetherian domain.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130349356
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T5mm
    • Jahr 2010
    • EAN 9786130349356
    • Format Fachbuch
    • ISBN 978-613-0-34935-6
    • Titel Torsion (Algebra)
    • Untertitel Abstract Algebra, Group (Mathematics), Periodic Group, Identity Element, Free Abelian Group, Pure Subgroup, Finitely Generated Module, Analytic Torsion
    • Gewicht 136g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 80
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38