Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Torsion (Algebra)
CHF 43.15
Auf Lager
SKU
GUTA7EHO1CT
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
High Quality Content by WIKIPEDIA articles! In abstract algebra, the term torsion refers to a number of concepts related to elements of finite order in groups and to the failure of modules to be free. Let G be a group. An element g of G is called a torsion element if g has finite order. If all elements of G are torsion, then G is called a torsion group. If the only torsion element is the identity element, then the group G is called torsion-free. Let M be a module over a ring R without zero divisors. An element m of M is called a torsion element if the cyclic submodule of M generated by m is not free. Equivalently, m is torsion if and only if it has a non-zero annihilator in R. If the ring R is commutative, then the set of all torsion elements forms a submodule of M, called the torsion submodule of M, sometimes denoted T(M). The module M is called a torsion module if T(M) = M, and is called torsion-free if T(M) = 0. If the ring R is non-commutative then the situation is more complicated, and the set of torsion elements need not be a submodule. Nevertheless, it is a submodule given the assumption that the ring R satisfies the Ore condition. This covers the case when R is a Noetherian domain.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130349356
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2010
- EAN 9786130349356
- Format Fachbuch
- ISBN 978-613-0-34935-6
- Titel Torsion (Algebra)
- Untertitel Abstract Algebra, Group (Mathematics), Periodic Group, Identity Element, Free Abelian Group, Pure Subgroup, Finitely Generated Module, Analytic Torsion
- Gewicht 136g
- Herausgeber Betascript Publishers
- Anzahl Seiten 80
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung