Towards Chereme based Dynamic Sign Language Gesture Recognition System

CHF 68.75
Auf Lager
SKU
3C91DJG9MD6
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The ability of computers to visually recognize and track hand motion is important for a wide range of applications in the field of Human-Computation Interaction. Though it is effortless for the human eye to locate and track a gesturing hand in video sequences, it is far more complex for computers to achieve perfect image segmentation and tracking. In this research we present a fairly robust multi-cue based segmentation approach that identifies candidate hand regions by simultaneously fusing motion, edges and skin-colour information. A self re-orienting boundary tracing algorithm is then used to identify the outlines of all candidate hand regions. Once the image blob boundaries are identified, the Gaussian statistics that describe each image blob are extracted. Blob tracking is achieved by probabilistically aligning closely matching blob patterns. Nonpersistent blob patterns are discarded as they are assumed to have been generated by image noise. Although there are no pervasive segmentation and tracking algorithms upon which we can benchmark our algorithms, the algorithms presented in this research successfully tracked about 80% of the samples of image sequences.

Autorentext

Inspired by the belief that computer vision is the technology of the future, Addmore Machanja''s research activities focus on designing image process algorithms. Robust computer vision algorithms allows for automation of almost all daily life processes. Yes, the adage which says to see is to believe is in deed true for computer vision researchers.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783844318715
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H220mm x B150mm x T9mm
    • Jahr 2011
    • EAN 9783844318715
    • Format Kartonierter Einband
    • ISBN 3844318712
    • Veröffentlichung 30.03.2011
    • Titel Towards Chereme based Dynamic Sign Language Gesture Recognition System
    • Autor Addmore Machanja , Vladimir B. Bajic
    • Untertitel A Digital Approach for Automating the Dynamic South African Sign Language Gesture Recognition Process
    • Gewicht 233g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 144

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470