Towards Integrative Machine Learning and Knowledge Extraction

CHF 65.55
Auf Lager
SKU
AOHK3PIKJV3
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.12.2025 und Do., 25.12.2025

Details

The BIRS Workshop Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of hot topics toward tackling the grand challenge of reaching a level of useful and useable computational intelligence with a focus on real-world problems, such as in the health domain. This encompasses learning from prior data, extracting and discovering knowledge, generalizing the results, fighting the curse of dimensionality, and ultimately disentangling the underlying explanatory factors in complex data, i.e., to make sense of data within the context of the application domain.

The workshop aimed to contribute advancements in promising novel areas such as at the intersection of machine learning and topological data analysis. History has shown that most often the overlapping areas at intersections of seemingly disparate fields are key for the stimulation of new insights and further advances. This is particularly true for the extremely broad field of machine learning.



Includes supplementary material: sn.pub/extras

Inhalt
Towards integrative Machine Learning & Knowledge Extraction.- Machine Learning and Knowledge Extraction in Digital Pathology needs an integrative approach.- Comparison of Public-Domain Software and Services for Probabilistic Record Linkage and Address Standardization.- Better Interpretable Models for Proteomics Data Analysis Using rule-based Mining.- Probabilistic Logic Programming in Action.- Persistent topology for natural data analysis A survey.- Predictive Models for Differentiation between Normal and Abnormal EEG through Cross-Correlation and Machine Learning Techniques.- A Brief Philosophical Note on Information.- Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline.- A Fast Semi-Automatic Segmentation Tool for Processing Brain Tumor Images.- Topological characteristics of oil and gas reservoirs and their applications.- Convolutional and Recurrent Neural Networks for Activity Recognition in Smart Environment.<p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319697741
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 224
    • Lesemotiv Verstehen
    • Genre Software
    • Auflage 1st edition 2017
    • Editor Andreas Holzinger, Vasile Palade, Massimo Ferri, Randy Goebel
    • Sprache Englisch
    • Gewicht 347g
    • Untertitel BIRS Workshop, Banff, AB, Canada, July 24-26, 2015, Revised Selected Papers
    • Größe H235mm x B155mm x T13mm
    • Jahr 2017
    • EAN 9783319697741
    • Format Kartonierter Einband
    • ISBN 3319697749
    • Veröffentlichung 29.10.2017
    • Titel Towards Integrative Machine Learning and Knowledge Extraction

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470