Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Towards Optimally Diverse Randomized Ensembles of Neural Networks
Details
The concept of ensemble learning has become exceptionally popular over the last couple decades due to the ability of a group of base classifiers trained for the same problem to often demonstrate higher accuracy than that of a single model. The main idea behind such an ensemble of models, which outperforms a single model, is to combine a set of diverse classifiers. This work concentrates on neural networks as base classifiers and explores the influence of the parameters of neural networks, whose randomization leads to generating diverse ensembles with better generalisation ability compared to a single model. For stimulating disagreement among the members of an ensemble of neural networks, we apply the sampling strategy similar to one implemented by Random Forests together with the variation of the network parameters. Experimental results demonstrate that by random varying different network parameters it is possible to induce diversity to an ensemble of neural networks, but it does not necessarily lead to an accuracy improvement. This work will be useful for people who are interested in ensemble methods and Artificial Neural Networks as a base classifier.
Autorentext
Anna Martin graduated from the University of Konstanz where she pursued her Master Degree in Computer and Information Science.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783330344518
- Genre Information Technology
- Anzahl Seiten 136
- Größe H220mm x B150mm
- Jahr 2017
- EAN 9783330344518
- Format Kartonierter Einband
- ISBN 978-3-330-34451-8
- Veröffentlichung 08.08.2017
- Titel Towards Optimally Diverse Randomized Ensembles of Neural Networks
- Autor Anna Martin
- Herausgeber LAP LAMBERT Academic Publishing
- Sprache Englisch