Translation, Brains and the Computer

CHF 191.45
Auf Lager
SKU
KJFDM1JJDIU
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.12.2025 und Do., 25.12.2025

Details

Addresses fundamental issues to solve the classic problems with machine translation
Recounts the little known background of early events affecting the history of machine translation
Identifies complexity as principal reason why machine translation has had limited success
Illustrates problems of ambiguity and complexity in various present-day machine translation models, rule-based (RBMT), statistical (SMT) and neural MT (NMT)

Inhalt
1 Introduction.- 2 Background.- Logos Model Beginnings.- Advent of Statistical MT.- Overview of Logos Model Translation Process.- Psycholinguistic and Neurolinguistic Assumptions.- On Language and Grammar.- Conclusion.- 3 Language and Ambiguity: Psycholinguistic Perspectives.- Levels of Ambiguity.- Language Acquisition and Translation.- Psycholinguistic Bases of Language Skills.- Practical Implications for Machine Translation.- Psycholinguistics in a Machine.- Conclusion.- 4 Language and Complexity: Neurolinguistic Perspectives .- Cognitive Complexity.- A Role for Semantic Abstraction.- Connectionism and Brain Simulation.- Logos Model as a Neural Network.- Language Processing in the Brain.- MT Performance and Underlying Competence.- Conclusion.- 5 Syntax and Semantics: Dichotomy or Integration? .- Syntax versus Semantics: Is There a Third, Semantico- Syntactic Perspective?.- Recent Views of the Cerebral Process.- Syntax and Semantics: How Do They Relate?.- Conclusion.- 6 Logos Model: Design and Performance.- The Translation Problem.- How Do You Represent Natural Language?.- How Do You Store Linguistic Knowledge?.- How Do You Apply Stored Knowledge To The Input Stream?.- How do you Effect Target Transfer and Generation?.- How Do You Deal with Complexity Issues?.- Conclusion.- 7 Some limits on Translation Quality.- First Example.- Second Example.- Other Translation Examples.- Balancing the Picture.- Conclusion.- 8 Deep Learning MT and Logos Model.- Points of Similarity and Differences.- Deep Learning, Logos Model and the Brain.- On Learning.- The Hippocampus Again.- Conclusion.- Part II.- The SAL Representation Language.- SAL Nouns.- SAL Verbs.- SAL Adjectives.- SAL Adverbs.<p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319766287
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 260
    • Lesemotiv Verstehen
    • Genre Software
    • Auflage 1st edition 2018
    • Sprache Englisch
    • Gewicht 559g
    • Untertitel A Neurolinguistic Solution to Ambiguity and Complexity in Machine Translation
    • Autor Bernard Scott
    • Größe H241mm x B160mm x T20mm
    • Jahr 2018
    • EAN 9783319766287
    • Format Fester Einband
    • ISBN 3319766287
    • Veröffentlichung 15.06.2018
    • Titel Translation, Brains and the Computer

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470