Transposition (Mathematics)

CHF 42.80
Auf Lager
SKU
82BLJI1HJIM
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

High Quality Content by WIKIPEDIA articles! In informal language, a transposition is a function that swaps two elements of a set. More formally, given a finite set X={a1,a2,ldots,a_n}, a transposition is a permutation (bijective function of X onto itself) f, such that there exist indices i,j with i neq j such that f(ai) = aj, f(aj) = ai and f(ak) = ak for all other indices k. This is often denoted (in the cycle notation) as (ai,aj).Any permutation can be expressed as the composition (product) of transpositions formally, they are generators for the group. In fact, if one orders the set as in {1,2,3,4,5}, then any permutation can be expressed as a product of adjacent transpositions, meaning the transpositions (k,k + 1), in this case (12),(23),(34),(45). This follows because an arbitrary transposition can be expressed as the product of adjacent transpositions. Concretely, one can express the transposition (k,l) where k l by moving k to l one step at a time, then moving l back to where k was, which interchanges these two and makes no other changes: (k,l) = (k,k+1)(k+1,k+2)dots(l-1,l)(l-2,l-1)dots(k,k+1).

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131151958
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131151958
    • Format Fachbuch
    • Titel Transposition (Mathematics)
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 84
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38