Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Traveling Salesman Problem
Details
The traveling salesman problem (TSP) is one of the most widely studied NP hard combinatorial optimization problems and has already solved in the semi-optimal manners using numbers of different methods. Among them, Genetic Algorithms (GA) is pre-dominating. In this paper I solve the problem with a new operator, Inver-over, for an evolutionary algorithm for the TSP. This operator outperforms all other 'genetic' operators, whether unary or binary, which was first introduced by Guo Tao and Zbigniew Michalewicz. I also propose a new algorithm for solving TSP and also introduced it modified version. To get a comparative idea of the performance of these algorithms I solve same problems with the two algorithms. The performance analysis shows that my proposed algorithm produces relatively better solutions in the case of the tour length every time. But when we increase the cities it takes more time to solve than the Inver-Over operator for TSP.
Autorentext
Syed Tauhid Zuhori joined as a Lecturer at theDepartment of Computer Science and Engineering atRajshahi University of Engineering and Technology at11 October 2009. Since then he worked in differentresearch groups. His research interest is in Cloudcomputing and Algorithm optimization. He won the"Student of the year" award at 3 times from RUET.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783846583050
- Auflage Aufl.
- Sprache Englisch
- Größe H220mm x B150mm x T4mm
- Jahr 2012
- EAN 9783846583050
- Format Kartonierter Einband
- ISBN 3846583057
- Veröffentlichung 31.01.2012
- Titel Traveling Salesman Problem
- Autor Syed Tauhid Zuhori
- Untertitel A Brief History,Introduction to Problem Statement and Comparing Performance between Genetic Algorithm and a New Approach
- Gewicht 102g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 56
- Genre Wirtschaft