Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Trends and Perspectives in Linear Statistical Inference
Details
This volume features selected contributions on a variety of topics related to linear statistical inference. The peer-reviewed papers from the International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat 2016) held in Istanbul, Turkey, 22-25 August 2016, cover topics in both theoretical and applied statistics, such as linear models, high-dimensional statistics, computational statistics, the design of experiments, and multivariate analysis. The book is intended for statisticians, Ph.D. students, and professionals who are interested in statistical inference.
Presents selected and peer-reviewed contributions on linear statistical inference Covers a wide range of topics in both theoretical and applied statistics Includes contributions on linear models and high-dimensional statistical analysis
Autorentext
Müjgan Tez is a professor at the Department of Mathematics of the Marmara University in Istanbul, Turkey. Her research interests include nonlinear models, measurement error of nonlinear models, geometry of statistical models, variance and covariance analysis, mixed models and meta-analysis.
Dietrich von Rosen graduated in mathematical statistics at Stockholm University, Sweden and is currently a professor at the Department of Energy and Technology of the Swedish University of Agricultural Sciences. His main research interest is multivariate analysis and its extensions, including repeated measurements analysis and high-dimensional analysis.
Inhalt
Foreword.- Comparison of estimation methods for inverse Weibull distribution (F. G. Akgül, B. enolu).- Liu-type negative binomial regression (Y. Asar).- Appraisal of performance of three tree-based classification methods (H. D. Asfha, B. K. Kilinc).- High-dimensional CLTs for individual Mahalanobis distances (D. Dai, T. Holgersson).- Bootstrap type-1 fuzzy functions approach for time series forecasting (A. Z. Dalar, E. Eriolu).- A weighted ensemble learning by SVM for longitudinal data: Turkish bank bankruptcy (B. E. Erdogan, S. Ö. Akyüz).- The complementary exponential phase type distribution (S. Eryilmaz).- Best linear unbiased prediction: Some properties of linear prediction sufficiency in the linear model (J. Isotalo, A. Markiewicz, S. Puntanen).- A note on circular m-consecutive-k-out-of-n: F Systems (C. Kan).- A categorical principal component regression on computer assisted instruction in probability domain (T. Kapucu, O. Ilk, . Batmaz).- Contemporary robust optimal design strategies (T. E. O'Brien).- Alternative approaches for the use of uncertain prior information to overcome the rank-deficiency of a linear model (B. Schaffrin, K. Snow, X. Fang).- Exact likelihood-based point and interval estimation for lifetime characteristics of Laplace distribution based on hybrid Type-I and Type-II censored data (F. Su, N. Balakrishnan, X. Zhu).- Statistical inference for two-compartment model parameters with bootstrap method and genetic algorithm (Ö. Türken, M. Tez).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319892429
- Editor Dietrich von Rosen, Müjgan Tez
- Sprache Englisch
- Auflage Softcover reprint of the original 1st edition 2018
- Größe H235mm x B155mm x T15mm
- Jahr 2019
- EAN 9783319892429
- Format Kartonierter Einband
- ISBN 3319892428
- Veröffentlichung 07.06.2019
- Titel Trends and Perspectives in Linear Statistical Inference
- Untertitel LinStat, Istanbul, August 2016
- Gewicht 411g
- Herausgeber Springer International Publishing
- Anzahl Seiten 268
- Lesemotiv Verstehen
- Genre Mathematik