Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Tucker's Lemma
CHF 43.15
Auf Lager
SKU
HBADGN4FST9
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
High Quality Content by WIKIPEDIA articles! In mathematics, Tucker's lemma is a combinatorial analog of the Borsuk Ulam theorem. In mathematics, the Borsuk Ulam theorem states that any continuous function from an n-sphere into Euclidean n-space maps some pair of antipodal points to the same point. (Two points on a sphere are called antipodal if they are in exactly opposite directions from the sphere's center.) The case n = 2 is often illustrated by saying that at any moment there is always a pair of antipodal points on the Earth's surface with equal temperatures and equal barometric pressures. This assumes that temperature and barometric pressure vary continuously. The Borsuk Ulam theorem was first conjectured by Stanis aw Ulam. It was proved by Karol Borsuk in 1933.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131143755
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131143755
- Format Fachbuch
- Titel Tucker's Lemma
- Herausgeber Betascript Publishing
- Anzahl Seiten 92
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung