Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Tutte Theorem
CHF 43.15
Auf Lager
SKU
64NFILL4EDF
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
High Quality Content by WIKIPEDIA articles! In the mathematical discipline of graph theory the Tutte theorem, named after William Thomas Tutte, is a characterization of graphs with perfect matchings. It is a generalization of the marriage theorem and is a special case of the Tutte-Berge formula.A given graph G= left( V, E right) has a perfect matching if and only if for every subset U of V the number of connected components with an odd number of vertices in the subgraph induced by V setminus U is less than or equal to the cardinality of U.Consider a graph G, with a perfect matching. Let U be an arbitrary subset of V. Delete U. Consider an arbitrary odd component in G-U,;C . Since G had a perfect matching, at least one vertex in C must be matched to a vertex in U. Hence, each odd component has at least one vertex matched with a vertex in U. Since each vertex in U can be in this relation with at most one connected component (because of it being matched at most once in a perfect matching), o(G-U)le U .
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131136122
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131136122
- Format Fachbuch
- Titel Tutte Theorem
- Herausgeber Betascript Publishing
- Anzahl Seiten 84
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung