Two-dimensional Crossing and Product Cubic Systems, Vol. II

CHF 215.70
Auf Lager
SKU
CFK7BES740I
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book, the 15th of 15 related monographs on Cubic Dynamic Systems, discusses crossing and product cubic systems with a crossing-linear and self-quadratic product vector field. The author discusses series of singular equilibriums and hyperbolic-to-hyperbolic-scant flows that are switched through the hyperbolic upper-to-lower saddles and parabola-saddles and circular and hyperbolic upper-to-lower saddles infinite-equilibriums. Series of simple equilibrium and paralleled hyperbolic flows are also discussed, which are switched through inflection-source (sink) and parabola-saddle infinite-equilibriums. Nonlinear dynamics and singularity for such crossing and product cubic systems are presented. In such cubic systems, the appearing bifurcations are: parabola-saddles, hyperbolic-to-hyperbolic-secant flows, third-order saddles (centers) and parabola-saddles (saddle-center).

Develops a theory of crossing and product cubic systems with a crossing-linear and self-quadratic product vector field Presents equilibrium series with hyperbolic-to-hyperbolic-scant flows and with paralleled hyperbolic flows Shows equilibrium series switching bifurcations by up-down hyperbolic upper-to-lower saddles, parabola-saddles, et al

Autorentext
Dr. Albert C. J. Luo is a Distinguished Research Professor at the Southern Illinois University Edwardsville, in Edwardsville, IL, USA. Dr. Luo worked on Nonlinear Mechanics, Nonlinear Dynamics, and Applied Mathematics. He proposed and systematically developed: (i) the discontinuous dynamical system theory, (ii) analytical solutions for periodic motions in nonlinear dynamical systems, (iii) the theory of dynamical system synchronization, (iv) the accurate theory of nonlinear deformable-body dynamics, (v) new theories for stability and bifurcations of nonlinear dynamical systems. He discovered new phenomena in nonlinear dynamical systems. His methods and theories can help understanding and solving the Hilbert sixteenth problems and other nonlinear physics problems. The main results were scattered in 45 monographs in Springer, Wiley, Elsevier, and World Scientific, over 200 prestigious journal papers, and over 150 peer-reviewed conference papers.


Inhalt

Quadratic and Cubic Product Systems.- Inflection Singularity and Bifurcation Dynamics.- Saddle-node and hyperbolic-flow singular dynamics.

<p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031570995
    • Genre Technology Encyclopedias
    • Lesemotiv Verstehen
    • Anzahl Seiten 272
    • Herausgeber Springer Nature Switzerland
    • Größe H241mm x B160mm x T20mm
    • Jahr 2025
    • EAN 9783031570995
    • Format Fester Einband
    • ISBN 3031570995
    • Veröffentlichung 30.03.2025
    • Titel Two-dimensional Crossing and Product Cubic Systems, Vol. II
    • Autor Albert C. J. Luo
    • Untertitel Crossing-linear and Self-quadraticProduct Vector Field
    • Gewicht 624g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470