Two-dimensional Two-product Cubic Systems, Vol I

CHF 197.05
Auf Lager
SKU
RA0JQ7VK61F
Stock 1 Verfügbar
Geliefert zwischen Mo., 23.02.2026 und Di., 24.02.2026

Details

This book is the ninth of 15 related monographs, discusses a two product-cubic dynamical system possessing different product-cubic structures and the equilibrium and flow singularity and bifurcations for appearing and switching bifurcations. The appearing bifurcations herein are parabola-saddles, saddle-sources (sinks), hyperbolic-to-hyperbolic-secant flows, and inflection-source (sink) flows. The switching bifurcations for saddle-source (sink) with hyperbolic-to-hyperbolic-secant flows and parabola-saddles with inflection-source (sink) flows are based on the parabola-source (sink), parabola-saddles, inflection-saddles infinite-equilibriums. The switching bifurcations for the network of the simple equilibriums with hyperbolic flows are parabola-saddles and inflection-source (sink) on the inflection-source and sink infinite-equilibriums. Readers will learn new concepts, theory, phenomena, and analysis techniques.

· Two-different product-cubic systems

· Hybrid networks of higher-order equilibriums and flows

· Hybrid series of simple equilibriums and hyperbolic flows

· Higher-singular equilibrium appearing bifurcations

· Higher-order singular flow appearing bifurcations

· Parabola-source (sink) infinite-equilibriums

· Parabola-saddle infinite-equilibriums

· Inflection-saddle infinite-equilibriums

· Inflection-source (sink) infinite-equilibriums

· Infinite-equilibrium switching bifurcations.

Develops a theory of nonlinear dynamics and singularity of two-different product-cubic dynamical systems Presents networks of singular and simple equilibriums and hyperbolic flows Reveals network switching bifurcations through infinite-equilibriums of parabola

Autorentext
Dr. Albert C. J. Luo is a Distinguished Research Professor at the Southern Illinois University Edwardsville, in Edwardsville, IL, USA. Dr. Luo worked on Nonlinear Mechanics, Nonlinear Dynamics, and Applied Mathematics. He proposed and systematically developed: (i) the discontinuous dynamical system theory, (ii) analytical solutions for periodic motions in nonlinear dynamical systems, (iii) the theory of dynamical system synchronization, (iv) the accurate theory of nonlinear deformable-body dynamics, (v) new theories for stability and bifurcations of nonlinear dynamical systems. He discovered new phenomena in nonlinear dynamical systems. His methods and theories can help understanding and solving the Hilbert sixteenth problems and other nonlinear physics problems. The main results were scattered in 45 monographs in Springer, Wiley, Elsevier, and World Scientific, over 200 prestigious journal papers, and over 150 peer-reviewed conference papers.



Inhalt

Chapter 1 Cubic Systems with Two different Product Structures.- Chapter 2 Parabola-saddle and Saddle-source (sink) Singularity.- Chapter 3 Inflection-source (sink) flows and parabola-saddles.- Chapter 4Saddle-source (sink) with hyperbolic flow singularity.- Chapter 5 Equilibrium matrices with hyperbolic flows.

<p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031484865
    • Genre Technology Encyclopedias
    • Lesemotiv Verstehen
    • Anzahl Seiten 348
    • Herausgeber Springer Nature Switzerland
    • Größe H241mm x B160mm x T24mm
    • Jahr 2024
    • EAN 9783031484865
    • Format Fester Einband
    • ISBN 303148486X
    • Veröffentlichung 06.11.2024
    • Titel Two-dimensional Two-product Cubic Systems, Vol I
    • Autor Albert C. J. Luo
    • Untertitel Different Product Structure VectorFields
    • Gewicht 751g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38