Unbounded Operator Algebras and Representation Theory

CHF 115.95
Auf Lager
SKU
RAFRNHQ0M9C
Stock 1 Verfügbar
Geliefert zwischen Di., 03.02.2026 und Mi., 04.02.2026

Details

-algebras of unbounded operators in Hilbert space, or more generally algebraic systems of unbounded operators, occur in a natural way in unitary representation theory of Lie groups and in the Wightman formulation of quantum field theory. In representation theory they appear as the images of the associated representations of the Lie algebras or of the enveloping algebras on the Garding domain and in quantum field theory they occur as the vector space of field operators or the -algebra generated by them. Some of the basic tools for the general theory were first introduced and used in these fields. For instance, the notion of the weak (bounded) commutant which plays a fundamental role in thegeneraltheory had already appeared in quantum field theory early in the six ties. Nevertheless, a systematic study of unbounded operator algebras began only at the beginning of the seventies. It was initiated by (in alphabetic order) BORCHERS, LASSNER, POWERS, UHLMANN and VASILIEV. J1'rom the very beginning, and still today, represen tation theory of Lie groups and Lie algebras and quantum field theory have been primary sources of motivation and also of examples. However, the general theory of unbounded operator algebras has also had points of contact with several other disciplines. In particu lar, the theory of locally convex spaces, the theory of von Neumann algebras, distri bution theory, single operator theory, the momcnt problem and its non-commutative generalizations and noncommutative probability theory, all have interacted with our subject.

Inhalt

  1. Preliminaries.- I. O-Algebras and Topologies.- 2. O-Families and Their Graph Topologies.- 3. Spaces of Linear Mappings Associated with O-Families and Their Topologization.- 4. Topologies for O-Famiiies with Metrizable Graph Topologies.- 5. Ultraweakly Continuous Linear Functionals and Duality Theory.- 6. The Generalized Calkin Algebra and the-Algebra 𝓛+(𝓓).- 7. Commutants.- II:-Representations.- 8. Basics of-Representations.- 9. Self-Adjoint Representations of Commutative-Algebras.- 10. Integrable Representations of Enveloping Algebras.- 11. n-Positivity and Complete Positivity of-Representations.- 12. Integral Decompositions of*-Representations and States.- Symbol Index.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Anzahl Seiten 384
    • Herausgeber Birkhäuser Basel
    • Gewicht 661g
    • Untertitel Operator Theory: Advances and Applications 37
    • Autor K. Schmüdgen
    • Titel Unbounded Operator Algebras and Representation Theory
    • Veröffentlichung 15.04.2014
    • ISBN 3034874715
    • Format Kartonierter Einband
    • EAN 9783034874717
    • Jahr 2014
    • Größe H244mm x B170mm x T21mm
    • Lesemotiv Verstehen
    • Auflage Softcover reprint of the original 1st edition 1990
    • GTIN 09783034874717

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38