Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging
Details
This book constitutes the refereed proceedings of the 6th Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, on October 10, 2024.
The 20 full papers presented in this book were carefully reviewed and selected from 28 submissions. They are organized in the following topical sections: annotation uncertainty; clinical implementation of uncertainty modelling and risk management in clinical pipelines; out of distribution and domain shift identification and management; uncertainty modelling and estimation.
Inhalt
.- Annotation Uncertainty.
.- Uncertainty-Aware Bayesian Deep Learning with Noisy Training Labels for Epileptic Seizure Detection.
.- Active Learning for Scribble-based Diffusion MRI Segmentation.
.- FISHing in Uncertainty: Synthetic Contrastive Learning for Genetic Aberration Detection.
.- Diagnose with Uncertainty Awareness: Diagnostic Uncertainty Encoding Framework for Radiology Report Generation.
.- Clinical implementation of uncertainty modelling and risk management in clinical pipelines.
.- Making Deep Learning Models Clinically Useful - Improving Diagnostic Confidence in Inherited Retinal Disease with Conformal Prediction.
.- GUARDIAN: Guarding Against Uncertainty and Adversarial Risks in Robot-Assisted Surgeries.
.- Quality Control for Radiology Report Generation Models via Auxiliary Auditing Components.
.- Conformal Performance Range Prediction for Segmentation Output Quality Control.
.- Holistic Consistency for Subject-level Segmentation Quality Assessment in Medical Image Segmentation.
.- Out of distribution and domain shift identification and management.
.- CROCODILE: Causality aids RObustness via COntrastive DIsentangled LEarning.
.- Image-conditioned Diffusion Models for Medical Anomaly Detection.
.- Information Bottleneck-based Feature Weighting for Enhanced Medical Image Out-of-Distribution Detection.
.- Beyond Heatmaps: A Comparative Analysis of Metrics for Anomaly Localization in Medical Images.
.- Typicality excels Likelihood for Unsupervised Out-of-Distribution Detection in Medical Imaging.
.- Evaluating Reliability in Medical DNNs: A Critical Analysis of Feature and Confidence-Based OOD Detection.
.- Uncertainty-Aware Vision Transformers for Medical Image Analysis.
.- Uncertainty modelling and estimation.
.- Efficient Precision control in Object Detection Models for Enhanced and Reliable Ovarian Follicle Counting.
.- GLANCE: Combating Label Noise using Global and Local Noise Correction for Multi-Label Chest X-ray Classification.
.- Conformal Prediction and Monte Carlo Inference for Addressing Uncertainty in Cervical Cancer Screening.
.- INFORMER- Interpretability Founded Monitoring of Medical Image Deep Learning.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031731570
- Genre Information Technology
- Editor Carole H. Sudre, Raghav Mehta, Cheng Ouyang, Chen Qin, Marianne Rakic, William M. Wells
- Lesemotiv Verstehen
- Anzahl Seiten 226
- Größe H13mm x B155mm x T235mm
- Jahr 2024
- EAN 9783031731570
- Format Kartonierter Einband
- ISBN 978-3-031-73157-0
- Titel Uncertainty for Safe Utilization of Machine Learning in Medical Imaging
- Untertitel 6th International Workshop, UNSURE 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings
- Gewicht 371g
- Herausgeber Springer
- Sprache Englisch