Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Unisolvent Functions
CHF 49.45
Auf Lager
SKU
DBS595KSGCF
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
High Quality Content by WIKIPEDIA articles! Systems of unisolvent functions are much more common in 1 dimension than in higher dimensions. In dimension d = 2 and higher ( Rd), the functions 1, 2, ..., n cannot be unisolvent on if there exists a single open set on which they are all continuous. To see this, consider moving points x1 and x2 along continuous paths in the open set until they have switched positions, such that x1 and x2 never intersect each other or any of the other xi. The determinant of the resulting system (with x1 and x2 swapped) is the negative of the determinant of the initial system. Since the functions i are continuous, the intermediate value theorem implies that some intermediate configuration has determinant zero, hence the functions cannot be unisolvent.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131133855
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131133855
- Format Fachbuch
- Titel Unisolvent Functions
- Herausgeber Betascript Publishing
- Anzahl Seiten 120
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung