Unisolvent Functions

CHF 49.45
Auf Lager
SKU
DBS595KSGCF
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! Systems of unisolvent functions are much more common in 1 dimension than in higher dimensions. In dimension d = 2 and higher ( Rd), the functions 1, 2, ..., n cannot be unisolvent on if there exists a single open set on which they are all continuous. To see this, consider moving points x1 and x2 along continuous paths in the open set until they have switched positions, such that x1 and x2 never intersect each other or any of the other xi. The determinant of the resulting system (with x1 and x2 swapped) is the negative of the determinant of the initial system. Since the functions i are continuous, the intermediate value theorem implies that some intermediate configuration has determinant zero, hence the functions cannot be unisolvent.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131133855
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131133855
    • Format Fachbuch
    • Titel Unisolvent Functions
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 120
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38