Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Unit Interval
CHF 43.15
Auf Lager
SKU
L7S03AV9HLB
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
High Quality Content by WIKIPEDIA articles! In mathematics, the unit interval is the closed interval [0,1], that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted I. In addition to its role in real analysis, the unit interval is used to study homotopy theory in the field of topology. In the literature, the term "unit interval" is sometimes applied to the other shapes that an interval from 0 to 1 could take: (0,1], [0,1), and (0,1) (see Notations for intervals). However, the notation I is most commonly reserved for the closed interval [0,1]. The unit interval is a complete metric space, homeomorphic to the extended real number line. As a topological space it is compact, contractible, path connected and locally path connected. The Hilbert cube is obtained by taking a topological product of countably many copies of the unit interval. In mathematical analysis, the unit interval is a one-dimensional analytical manifold whose boundary consists of the two points 0 and 1. Its standard orientation goes from 0 to 1.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131118791
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131118791
- Format Fachbuch
- Titel Unit Interval
- Herausgeber Betascript Publishing
- Anzahl Seiten 84
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung