Unit Interval

CHF 43.15
Auf Lager
SKU
L7S03AV9HLB
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, the unit interval is the closed interval [0,1], that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted I. In addition to its role in real analysis, the unit interval is used to study homotopy theory in the field of topology. In the literature, the term "unit interval" is sometimes applied to the other shapes that an interval from 0 to 1 could take: (0,1], [0,1), and (0,1) (see Notations for intervals). However, the notation I is most commonly reserved for the closed interval [0,1]. The unit interval is a complete metric space, homeomorphic to the extended real number line. As a topological space it is compact, contractible, path connected and locally path connected. The Hilbert cube is obtained by taking a topological product of countably many copies of the unit interval. In mathematical analysis, the unit interval is a one-dimensional analytical manifold whose boundary consists of the two points 0 and 1. Its standard orientation goes from 0 to 1.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131118791
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131118791
    • Format Fachbuch
    • Titel Unit Interval
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 84
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38