Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Univalent Function
CHF 36.90
Auf Lager
SKU
4ENCD14HTTG
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026
Details
High Quality Content by WIKIPEDIA articles! In mathematics, in the branch of complex analysis, a holomorphic function on an open subset of the complex plane is called univalent if it is one-to-one. Any mapping a of the open unit disc to itself, :phi_a(z) =frac{z-a}{1 - bar{a}z}, where a le 1, is univalent. One can prove that if G and are two open connected sets in the complex plane, and f: G to Omega is a univalent function such that f(G) = (that is, f is onto), then the derivative of f is never zero, f is invertible, and its inverse f 1 is also holomorphic. More, one has by the chain rule (f^{-1})'(f(z)) = frac{1}{f'(z)} for all z in G. For real analytic functions, unlike for complex analytic (that is, holomorphic) functions, these statements fail to hold. For example, consider the function f: (-1, 1) to (-1, 1) given by f(x) = x3. This function is clearly one-to-one, however, its derivative is 0 at x = 0, and its inverse is not analytic, or even differentiable, on the whole interval ( 1,1).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131116698
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131116698
- Format Fachbuch
- Titel Univalent Function
- Herausgeber Betascript Publishing
- Anzahl Seiten 64
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung