Univalent Function

CHF 36.90
Auf Lager
SKU
4ENCD14HTTG
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, in the branch of complex analysis, a holomorphic function on an open subset of the complex plane is called univalent if it is one-to-one. Any mapping a of the open unit disc to itself, :phi_a(z) =frac{z-a}{1 - bar{a}z}, where a le 1, is univalent. One can prove that if G and are two open connected sets in the complex plane, and f: G to Omega is a univalent function such that f(G) = (that is, f is onto), then the derivative of f is never zero, f is invertible, and its inverse f 1 is also holomorphic. More, one has by the chain rule (f^{-1})'(f(z)) = frac{1}{f'(z)} for all z in G. For real analytic functions, unlike for complex analytic (that is, holomorphic) functions, these statements fail to hold. For example, consider the function f: (-1, 1) to (-1, 1) given by f(x) = x3. This function is clearly one-to-one, however, its derivative is 0 at x = 0, and its inverse is not analytic, or even differentiable, on the whole interval ( 1,1).

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131116698
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131116698
    • Format Fachbuch
    • Titel Univalent Function
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 64
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38