Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Univariate Time Series Modelling and Forecasting using TSMARS
Details
This monograph examines nonlinear threshold time series models using TSMARS, a time series extension of the Multivariate Adaptive Regression Splines (MARS). MARS is model free and can detect and measure linear and curvilinear structure in data. Novel aspects include applications to Ireland's Trade Statistics and the introduction of regime dependent threshold seasonal time series models - the effect of seasonal adjustment in the presenence of a threshold is examined using these models. Two important new advances are incorporated into TSMARS. The first allows TSMARS to automatically treat ordinary and dynamic outliers. The second is a new procedure to estimate treshold moving average models within TSMARS. Both of these advances are described, implemented in SAS/IML, tested and results are reported. Finally, parametric and nonparametric bootstrapped procedures are described and the forecasts investigated.
Autorentext
I am a mathematician/statistician working in asylum and immigration statistics. My research interests include nonlinear time series analysis, probability and statistical models using parametric, bayesian and non-parametric methods.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783838335957
- Sprache Englisch
- Größe H220mm x B150mm x T15mm
- Jahr 2010
- EAN 9783838335957
- Format Kartonierter Einband
- ISBN 3838335953
- Veröffentlichung 20.01.2010
- Titel Univariate Time Series Modelling and Forecasting using TSMARS
- Autor Gerard Keogh
- Untertitel A study of threshold time series autoregressive, seasonal and moving average models using TSMARS
- Gewicht 387g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 248
- Genre Mathematik