Universally Measurable Set

CHF 43.10
Auf Lager
SKU
37Q96L67T1J
Stock 1 Verfügbar
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, a subset A of a Polish space X is universally measurable if it is measurable with respect to every complete probability measure on X that measures all Borel subsets of X. In particular, a universally measurable set of reals is necessarily Lebesgue measurable below. Every analytic set is universally measurable. It follows from projective determinacy, which in turn follows from sufficient large cardinals, that every projective set is universally measurable. The condition that the measure be a probability measure; that is, that the measure of X itself be 1, is less restrictive than it may appear. For example, Lebesgue measure on the reals is not a probability measure, yet every universally measurable set is Lebesgue measurable.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131116421
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131116421
    • Format Fachbuch
    • Titel Universally Measurable Set
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 80
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38