Vanish at Infinity

CHF 42.80
Auf Lager
SKU
TV27KHBMJNL
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, a function on a normed vector space is said to vanish at infinity if f(x)to 0 as x to infty. For example, the function f(x)=frac{1}{1+x^2} defined on the real line vanishes at infinity. There is a generalization of this to a locally compact setting. A function f on a locally compact space (which may not have a norm) vanishes at infinity if, given any positive number , there is a compact subset K such that f(x) epsilon whenever the point x lies outside of K. Both of these notions correspond to the intuitive notion of adding a point "at infinity" and requiring the values of the function to get arbitrarily close to zero as we approach it. This "definition" can be formalized in many cases by adding a point at infinity.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131123481
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131123481
    • Format Fachbuch
    • Titel Vanish at Infinity
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38