Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Vanishing and Finiteness Results in Geometric Analysis
Details
This book details very recent results in geometric analysis. Some of the applications presented concern the topology at infinity of submanifolds, Lp cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for Kähler manifolds.
This book describes very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). To make up for the lack of compactness, the book develops a range of methods, from spectral theory and qualitative properties of solutions of PDEs, to comparison theorems in Riemannian geometry and potential theory. In addition, it describes all needed tools in detail, often with an original approach. Some of the applications presented concern the topology at infinity of submanifolds, Lp cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for Kähler manifolds.
Comprehensive account of very recent results in geometric analysis Essentially self-contained, supplying the necessary background material which is not easily available in book form and presenting much of it in a new, original form Includes supplementary material: sn.pub/extras
Inhalt
Harmonic, pluriharmonic, holomorphic maps and basic Hermitian and Kählerian geometry.- Comparison Results.- Review of spectral theory.- Vanishing results.- A finite-dimensionality result.- Applications to harmonic maps.- Some topological applications.- Constancy of holomorphic maps and the structure of complete Kähler manifolds.- Splitting and gap theorems in the presence of a Poincaré-Sobolev inequality.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783764386412
- Sprache Englisch
- Auflage 2008
- Größe H241mm x B160mm x T21mm
- Jahr 2008
- EAN 9783764386412
- Format Fester Einband
- ISBN 376438641X
- Veröffentlichung 17.04.2008
- Titel Vanishing and Finiteness Results in Geometric Analysis
- Autor Stefano Pigola , Alberto G Setti , Marco Rigoli
- Untertitel A Generalization of the Bochner Technique
- Gewicht 617g
- Herausgeber Birkhäuser Basel
- Anzahl Seiten 300
- Lesemotiv Verstehen
- Genre Mathematik