Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Variance Decomposition
CHF 42.60
Auf Lager
SKU
5LVR719J5GE
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
High Quality Content by WIKIPEDIA articles! Variance Decomposition or Forecast error variance decomposition indicates the amount of information each variable contributes to the other variables in a Vector autoregression VAR models. Variance decomposition determines how much of the forecast error variance of each of the variable can be explained by exogenous shocks to the other variables. Vector autoregression VAR is an econometric model used to capture the evolution and the interdependencies between multiple time series, generalizing the univariate AR models. All the variables in a VAR are treated symmetrically by including for each variable an equation explaining its evolution based on its own lags and the lags of all the other variables in the model. Based on this feature, Christopher Sims advocates the use of VAR models as a theory-free method to estimate economic relationships, thus being an alternative to the "incredible identification restrictions" in structural models.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130335212
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2010
- EAN 9786130335212
- Format Fachbuch
- ISBN 978-613-0-33521-2
- Titel Variance Decomposition
- Untertitel Variance Decomposition, General Matrix Notation, Cholesky Decomposition, Linear Algebra, Matrix Decomposition, Factorization, Forecasting
- Gewicht 142g
- Herausgeber Betascript Publishers
- Anzahl Seiten 84
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung