Variational and Quasi-Variational Inequalities in Mechanics

CHF 155.95
Auf Lager
SKU
LJLUK8B5QIT
Stock 1 Verfügbar
Geliefert zwischen Mi., 25.02.2026 und Do., 26.02.2026

Details

The variational method is a powerful tool to investigate states and processes in technical devices, nature, living organisms, systems, and economics. The power of the variational method consists in the fact that many of its sta- ments are physical or natural laws themselves. The essence of the variational approach for the solution of problems rel- ing to the determination of the real state of systems or processes consists in thecomparisonofclosestates.Theselectioncriteriafortheactualstatesmust be such that all the equations and conditions of the mathematical model are satis?ed. Historically, the ?rst variational theory was the Lagrange theory created to investigate the equilibrium of ?nite-dimensional mechanical systems under holonomic bilateral constraints (bonds). The selection criterion proposed by Lagrange is the admissible displacement principle. In accordance with this principle, the work of the prescribed forces (supposed to be constant) on in?nitesimally small, kinematically admissible (virtual) displacements is zero. It is known that equating the virtual work performed for potential systems to zero is equivalent to the stationarity conditions for the total energy of the system. The transition from bilateral constraints to unilateral ones was performed by O. L. Fourier. Fourier demonstrated that the virtual work on small dist- bances of a stable equilibrium state of a mechanical system under unilateral constraints must be positive (or, at least, nonnegative). Therefore, for such a system the corresponding mathematical model is reduced to an inequality and the problem becomes nonlinear.

The book to deal with this subject after a number of years Will appeal to a wide readership

Inhalt
Notations and Basics.- Variational Setting of Linear Steady-state Problems.- Variational Theory for Nonlinear Smooth Systems.- Unilateral Constraints and Nondifferentiable Functionals.- Transformation of Variational Principles.- Nonstationary Problems and Thermodynamics.- Solution Methods and Numerical Implementation.- Concluding Remarks.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781402063763
    • Auflage 2007
    • Sprache Englisch
    • Genre Maschinenbau
    • Lesemotiv Verstehen
    • Anzahl Seiten 352
    • Größe H241mm x B160mm x T25mm
    • Jahr 2007
    • EAN 9781402063763
    • Format Fester Einband
    • ISBN 1402063768
    • Veröffentlichung 27.09.2007
    • Titel Variational and Quasi-Variational Inequalities in Mechanics
    • Autor Pekka J. Neittaanmäki , Alexander S. Kravchuk
    • Untertitel Solid Mechanics and Its Applications 147
    • Gewicht 694g
    • Herausgeber Springer Netherlands

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38