Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Variational Methods, Lusternik-Schnirelman Theory and Applications
Details
This project concerns mainly the study of the critical point Theory of Lusternik-Schnirelman which relies deeply on concepts from Nonlinear Analysis, Topology and Geometry, and has numerous applications to Variational Problems and Partial Differential Equations (PDEs) of variational nature. We first survey the general variational principles and provide the underlying abstract setting need for the theory and its applications. Secondly we present a very successful min-max method (Ambrosetti-Rabinowitz Mountain-pass theorem) based on the Palais-Smale (compactness) condition and followed by examples. Afterwards we introduce progressively the Lusternik-Schrenirelman theories in Euclidean spaces (finite dimensional case) and in Hilbert spaces as well as in uniformly convex Banach spaces (infinite dimensional cases), along with applications.
Autorentext
PhD Functional Analysis and Applications, SISSA, Trieste, Italy.Researcher at the African University of Science and Technology (AUST), Abuja, Nigeria, and at the Institut de Mathematiques et de Sciences Physiques (IMSP), Porto-Novo, Benin.Joint Project with M.E. Okpala (Teaching Assistant, AUST).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659273834
- Sprache Englisch
- Größe H220mm x B5mm x T150mm
- Jahr 2012
- EAN 9783659273834
- Format Kartonierter Einband (Kt)
- ISBN 978-3-659-27383-4
- Titel Variational Methods, Lusternik-Schnirelman Theory and Applications
- Autor Guy Degla , Mmaduabuchi E. Okpala
- Untertitel Critical point theory and Minmax methods
- Gewicht 132g
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 76
- Genre Mathematik