Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
VC Dimension
CHF 36.85
Auf Lager
SKU
AF1MADAVPBD
Geliefert zwischen Mo., 02.02.2026 und Di., 03.02.2026
Details
High Quality Content by WIKIPEDIA articles! In statistical learning theory, or sometimes computational learning theory, the VC dimension (for Vapnik Chervonenkis dimension) is a measure of the capacity of a statistical classification algorithm, defined as the cardinality of the largest set of points that the algorithm can shatter. It is a core concept in Vapnik Chervonenkis theory, and was originally defined by Vladimir Vapnik and Alexey Chervonenkis. Informally, the capacity of a classification model is related to how complicated it can be. For example, consider the thresholding of a high-degree polynomial: if the polynomial evaluates above zero, that point is classified as positive, otherwise as negative. A high-degree polynomial can be wiggly, so it can fit a given set of training points well. But one can expect that the classifier will make errors on other points, because it is too wiggly. Such a polynomial has a high capacity. A much simpler alternative is to threshold a linear function. This polynomial may not fit the training set well, because it has a low capacity. We make this notion of capacity more rigorous below.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131124051
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131124051
- Format Fachbuch
- Titel VC Dimension
- Herausgeber Betascript Publishing
- Anzahl Seiten 68
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung