Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Vector Quantization
CHF 49.05
Auf Lager
SKU
NCB0849OFRH
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026
Details
High Quality Content by WIKIPEDIA articles! Vector quantization is a classical quantization technique from signal processing which allows the modeling of probability density functions by the distribution of prototype vectors. It was originally used for data compression. It works by dividing a large set of points (vectors) into groups having approximately the same number of points closest to them. Each group is represented by its centroid point, as in k-means and some other clustering algorithms. The density matching property of vector quantization is powerful, especially for identifying the density of large and high-dimensioned data. Since data points are represented by the index of their closest centroid, commonly occurring data have low error, and rare data high error. This is why VQ is suitable for lossy data compression. It can also be used for lossy data correction and density estimation. Vector quantization is based on the competitive learning paradigm, so it is closely related to the self-organizing map model.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130354572
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786130354572
- Format Fachbuch
- Titel Vector Quantization
- Herausgeber Betascript Publishing
- Anzahl Seiten 112
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung