Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Verifiable Secret Sharing
CHF 37.00
Auf Lager
SKU
K0BST5VH9VD
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026
Details
High Quality Content by WIKIPEDIA articles! In cryptography, a secret sharing scheme is verifiable if auxiliary information is included that allows players to verify their shares as consistent. More formally, verifiable secret sharing ensures that even if the dealer is malicious there is a well-defined secret that the players can later reconstruct. (In standard secret sharing, the dealer is assumed to be honest.) The concept of verifiable secret sharing (VSS) was first introduced in 1985 by Benny Chor, Shafi Goldwasser, Silvio Micali and Baruch Awerbuch. In a VSS protocol a distinguished player who wants to share the secret is referred to as the dealer. The protocol consists of two phases: a sharing phase and a reconstruction phase. Sharing: Initially the dealer holds secret as input and each player holds an independent random input. The sharing phase may consist of several rounds. At each round each player can privately send messages to other players and it can also broadcast a message. Each message sent or broadcast by a player is determined by its input, its random input and messages received from other players in previous rounds.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130355586
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T4mm
- Jahr 2010
- EAN 9786130355586
- Format Kartonierter Einband
- ISBN 978-613-0-35558-6
- Titel Verifiable Secret Sharing
- Untertitel Cryptography, Secret Sharing, Shafi Goldwasser, Silvio Micali, Secure Multi-Party Computation, Homomorphic Encryption, Discrete Logarithm, Multiplicative Group of Integers Modulo n
- Gewicht 125g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 72
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung