Vertical Tangent

CHF 43.15
Auf Lager
SKU
P1O42PR3L7A
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, a vertical tangent is tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.A function has a vertical tangent at x = a if the difference quotient used to define the derivative has infinite limit: lim{hto 0}frac{f(a+h) - f(a)}{h} = {+infty}quadtext{or}quadlim{hto 0}frac{f(a+h) - f(a)}{h} = {-infty}. The first case corresponds to an upward-sloping vertical tangent, and the second case to a downward-sloping vertical tangent. Informally speaking, the graph of has a vertical tangent at x = a if the derivative of at a is either positive or negative infinity.For a continuous function, it is often possible to detect a vertical tangent by taking the limit of the derivative. If lim{xto a} f'(x) = {+infty}text{,} then must have an upward-sloping vertical tangent at x = a. Similarly, if lim{xto a} f'(x) = {-infty}text{,} then must have an downward-sloping vertical tangent at x = a. In these situations, the vertical tangent to appears as a vertical asymptote on the graph of the derivative.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131159145
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131159145
    • Format Fachbuch
    • Titel Vertical Tangent
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 92
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38