Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Vertical Tangent
CHF 43.15
Auf Lager
SKU
P1O42PR3L7A
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
High Quality Content by WIKIPEDIA articles! In mathematics, a vertical tangent is tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.A function has a vertical tangent at x = a if the difference quotient used to define the derivative has infinite limit: lim{hto 0}frac{f(a+h) - f(a)}{h} = {+infty}quadtext{or}quadlim{hto 0}frac{f(a+h) - f(a)}{h} = {-infty}. The first case corresponds to an upward-sloping vertical tangent, and the second case to a downward-sloping vertical tangent. Informally speaking, the graph of has a vertical tangent at x = a if the derivative of at a is either positive or negative infinity.For a continuous function, it is often possible to detect a vertical tangent by taking the limit of the derivative. If lim{xto a} f'(x) = {+infty}text{,} then must have an upward-sloping vertical tangent at x = a. Similarly, if lim{xto a} f'(x) = {-infty}text{,} then must have an downward-sloping vertical tangent at x = a. In these situations, the vertical tangent to appears as a vertical asymptote on the graph of the derivative.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131159145
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131159145
- Format Fachbuch
- Titel Vertical Tangent
- Herausgeber Betascript Publishing
- Anzahl Seiten 92
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung