Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Volterra Type Integral Equations
Details
This monograph is devoted to the investigation of onedimensional Volterra type integral equations withfixed boundary and interior singularity andsuper-singularity on kernels, closely connectionwith up to now small study of the third kind integralequations. Chapter I-VI investigates Volterra type integralequation with left , right and interior fixedsingularity and super-singularity kernels. Found thecase, when general solution consideration equationcontains one or two constants, and the case , whenthey have unique solutions. In chapter VII, we investigate the symmetricalintegral equations. Developed methods in monographgive possibility to investigate many-dimensionalVolterra type integral equation with boundary andinterior domains. In particular, this theory appliesto finding other particular solutions of two-dimensionalComplex integral equation, connection withgeneralized analytic function with boundary singularor super-singular lines in kernels.
Autorentext
Born in 1938 in Tajikistan. Mathematician, Professor, Dr. of Physics and Mathematics, Moscow, 1978; Manager of the Chair, Mathematics Analysis and Function Theory, Tajik State National University; Academic Secretary in Academy ofScience. Included in book "500 Greatest Geniuses of the 21st Centure", USA, 2007. E-mail:nusrat38@mail.ru
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783844385779
- Sprache Englisch
- Größe H220mm x B150mm x T18mm
- Jahr 2011
- EAN 9783844385779
- Format Kartonierter Einband
- ISBN 3844385770
- Veröffentlichung 14.06.2011
- Titel Volterra Type Integral Equations
- Autor Nusrat Rajabov
- Untertitel with boundary and interior fixed singularity and super-singularity kernels and their application
- Gewicht 453g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 292
- Genre Mathematik