Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Volume Form
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, a volume form on a differentiable manifold is a nowhere vanishing differential form of top degree. A volume form provides a means to define the integral of a function on a differentiable manifold. In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a twisted volume form or pseudo-volume form. It also defines a measure, but exists on any differentiable manifold, orientable or not.
Klappentext
High Quality Content by WIKIPEDIA articles! In mathematics, a volume form on a differentiable manifold is a nowhere vanishing differential form of top degree. A volume form provides a means to define the integral of a function on a differentiable manifold. In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a twisted volume form or pseudo-volume form. It also defines a measure, but exists on any differentiable manifold, orientable or not.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130316082
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Genre Physik & Astronomie
- Größe H220mm x B220mm
- Jahr 2009
- EAN 9786130316082
- Format Fachbuch
- ISBN 978-613-0-31608-2
- Titel Volume Form
- Untertitel Differentiable Manifold, Differential Form, Section (Fiber Bundle), Line Bundle, Integral, Lebesgue Integration, Pseudo-Riemannian Manifold, Poincaré Metric
- Herausgeber Betascript Publishers
- Anzahl Seiten 84