Von Neumann Regular Ring

CHF 49.05
Auf Lager
SKU
ESU137NF8SG
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, a ring R is von Neumann regular if for every a in R there exists an x in R with a = axa. One may think of x as a "weak inverse" of a; note however that in general x is not uniquely determined by a. Every field (and every skew field) is von Neumann regular: for a 0 we can take x = a -1. An integral domain is von Neumann regular if and only if it is a field. Every semisimple ring is von Neumann regular, and a left (or right) Noetherian von Neumann regular ring is semisimple. Every von Neumann regular ring has Jacobson radical {0} and is thus semiprimitive (also called "Jacobson semi-simple"). Generalizing the above example, suppose S is some ring and M is an S-module such that every submodule of M is a direct summand of M (such modules M are called semisimple). Then the endomorphism ring EndS(M) is von Neumann regular. In particular, every semisimple ring is von Neumann regular.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131167539
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131167539
    • Format Fachbuch
    • Titel Von Neumann Regular Ring
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 112
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38