Weak Coloring

CHF 43.15
Auf Lager
SKU
U53PD2JDLL3
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! A graph vertex coloring is a weak coloring, but not necessarily vice versa. Every graph has a weak 2-coloring. The figure on the right illustrates a simple algorithm for constructing a weak 2-coloring in an arbitrary graph. Part (a) shows the original graph. Part (b) shows a breadth-first search tree of the same graph. Part (c) shows how to color the tree: starting from the root, the layers of the tree are colored alternatingly with colors 1 (dark) and 2 (light). If there is no isolated vertex in the graph G, then a weak 2-coloring determines a domatic partition: the set of the nodes with c(v) = 1 is a dominating set, and the set of the nodes with c(v) = 2 is another dominating set.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131190704
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131190704
    • Format Fachbuch
    • Titel Weak Coloring
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 92
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38