Weighted Lacunary Interpolation Processes On An Infinite Interval

CHF 61.40
Auf Lager
SKU
JSEIFF0DEOD
Stock 1 Verfügbar
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026

Details

The aim of this book is to study certain weighted lacunary interpolation processes on an infinite interval. By lacunary interpolation we mean to study an interpolation process when non consecutive derivatives are prescribed on a given set of nodes. Here we have considered the existence, uniqueness, explicit representation of a modified weighted (0, 1, 3) and (0, 1, 2, , r - 2, r) interpolations on an arbitrary set of nodes, weighted (0, 2), (0, 1, 3) interpolations on the zeros of nth-Hermite polynomial and a mixed type (0; 0, 2) interpolation when function values and weighted (0, 2) are prescribed on the zeros of nth-Hermite polynomials and its derivative respectively. A convergence theorem has been obtained in these cases. The results obtained here are better to some earlier results obtained by several mathematicians in the sense that (i) an artificial looking condition, used for obtaining the explicit representation of the fundamental polynomials, has been replaced by a simple interpolatory condition (ii) the results have been obtained in the case when n is considered to be odd and (iii) an improved quantitative estimate of the interpolatory polynomials has been obtained.

Autorentext

I am presently working as an Associate Professor in the Department of Mathematics and Astronomy, University of Lucknow, India. I did my Ph.D. in 2001. My interests are in Interpolation On Real Line & Unit Circle, Chaos in Social systems, Potential Theory, Wavelets Through Trigonometric Interpolation etc.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783845474908
    • Sprache Englisch
    • Größe H220mm x B220mm x T150mm
    • Jahr 2013
    • EAN 9783845474908
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-8454-7490-8
    • Titel Weighted Lacunary Interpolation Processes On An Infinite Interval
    • Autor Pankaj Mathur
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 100
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38