Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Weil Châtelet Group
CHF 43.15
Auf Lager
SKU
HGNEBVP1F3R
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
High Quality Content by WIKIPEDIA articles! In mathematics, particularly in arithmetic geometry, the Weil-Châtelet group of an abelian variety A defined over a field K is the abelian group of principal homogeneous spaces for A, defined over K. It is named for André Weil, who introduced the general group operation in it, and François Châtelet. It plays a basic role in the arithmetic of abelian varieties, in particular for elliptic curves, because of its connection with infinite descent. It can be defined directly from Galois cohomology, as H1(GK,A), where GK is the absolute Galois group of K. It is of particular interest for local fields and global fields, such as algebraic number fields. For K a finite field, it was proved that the group is trivial. The Tate-Shafarevich group, named for John Tate and Igor Shafarevich, of an abelian variety A defined over a number field K consists of the elements of the Weil-Châtelet group that become trivial in all of the completions of K (i.e. the p-adic fields obtained from K, as well as its real and complex completions). Thus, in terms of Galois cohomology.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131182501
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131182501
- Format Fachbuch
- Titel Weil Châtelet Group
- Herausgeber Betascript Publishing
- Anzahl Seiten 76
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung