Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Weil Reciprocity Law
CHF 48.85
Auf Lager
SKU
NGVJP826NQ3
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
High Quality Content by WIKIPEDIA articles! In mathematics, the Weil reciprocity law is a result of André Weil holding in the function field K(C) of an algebraic curve C over an algebraically closed field K. Given functions f and g in K(C), i.e. rational functions on C, then f((g)) = g((f)) where the notation has this meaning: (h) is the divisor of the function h, or in other words the formal sum of its zeroes and poles counted with multiplicity; and a function applied to a formal sum means the product (with multiplicities, poles counting as a negative multiplicity) of the values of the function at the points of the divisor. With this definition there must be the side-condition, that the divisors of f and g have disjoint support (which can be removed). In the case of the projective line, this can be proved by manipulations with the resultant of polynomials. See for example Jean-Pierre Serre, Groupes algébriques et corps de classes, pp.44-46, for this as a special case of a theory on mapping algebraic curves into commutative groups. There is a generalisation of Serge Lang to abelian varieties (Lang, Abelian Varieties).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131182266
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131182266
- Format Fachbuch
- Titel Weil Reciprocity Law
- Herausgeber Betascript Publishing
- Anzahl Seiten 120
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung