Weil Reciprocity Law

CHF 48.85
Auf Lager
SKU
NGVJP826NQ3
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, the Weil reciprocity law is a result of André Weil holding in the function field K(C) of an algebraic curve C over an algebraically closed field K. Given functions f and g in K(C), i.e. rational functions on C, then f((g)) = g((f)) where the notation has this meaning: (h) is the divisor of the function h, or in other words the formal sum of its zeroes and poles counted with multiplicity; and a function applied to a formal sum means the product (with multiplicities, poles counting as a negative multiplicity) of the values of the function at the points of the divisor. With this definition there must be the side-condition, that the divisors of f and g have disjoint support (which can be removed). In the case of the projective line, this can be proved by manipulations with the resultant of polynomials. See for example Jean-Pierre Serre, Groupes algébriques et corps de classes, pp.44-46, for this as a special case of a theory on mapping algebraic curves into commutative groups. There is a generalisation of Serge Lang to abelian varieties (Lang, Abelian Varieties).

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131182266
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131182266
    • Format Fachbuch
    • Titel Weil Reciprocity Law
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 120
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38