Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Weingarten Function
CHF 61.10
Auf Lager
SKU
GGOTAJFOJKB
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026
Details
High Quality Content by WIKIPEDIA articles! In mathematics, Weingarten functions are rational functions indexed by partitions of integers that can be used to calculate integrals of products of matrix coefficients over classical groups. They were first studied by Weingarten (1978) who found their asymptotic behavior, and named by Collins (2003), who evaluated them explicitly for the unitary group. The Weingarten functions are rational functions in d. They can have poles for small values of d, which cancel out in the formula above. There is an alternative inequivalent definition of Weingarten functions, where one only sums over partitions with at most d parts. This is no longer a rational function of d, but is finite for all positive integers d. The two sorts of Weingarten functions coincide for d larger than q, and either can be used in the formula for the integral. For orthogonal and symplectic groups the Weingarten functions were evaluated by Collins & niady (2006). Their theory is similar to the case of the unitary group. They are parameterized by partitions such that all parts have even size.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131182846
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131182846
- Format Fachbuch
- Titel Weingarten Function
- Herausgeber Betascript Publishing
- Anzahl Seiten 152
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung