Well-ordering Principle

CHF 43.15
Auf Lager
SKU
FA98PGIHNR1
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, the well-ordering principle states that every non-empty set of positive integers contains a smallest element. The phrase "well-ordering principle" is sometimes taken to be synonymous with the "well-ordering theorem". On other occasions it is understood to be the proposition that the set of integers { , 2, 1, 0, 1, 2, 3, } contains a well-ordered subset, called the natural numbers, in which every nonempty subset contains a least element. Depending on the framework in which the natural numbers are introduced, this (second order) property of the set of natural numbers is either an axiom or a provable theorem. For example: In Peano Arithmetic, second-order arithmetic and related systems, and indeed in most (not necessarily formal) mathematical treatments of the well-ordering principle, the principle is derived from the principle of mathematical induction, which is itself taken as basic.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131184413
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131184413
    • Format Fachbuch
    • Titel Well-ordering Principle
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 92
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38