Well-Posedness of Parabolic Difference Equations

CHF 69.15
Auf Lager
SKU
DO1UM0R86HV
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

A well-known and widely applied method of approximating the solutions of problems in mathematical physics is the method of difference schemes. Modern computers allow the implementation of highly accurate ones; hence, their construction and investigation for various boundary value problems in mathematical physics is generating much current interest. The present monograph is devoted to the construction of highly accurate difference schemes for parabolic boundary value problems, based on Padé approximations. The investigation is based on a new notion of positivity of difference operators in Banach spaces, which allows one to deal with difference schemes of arbitrary order of accuracy. Establishing coercivity inequalities allows one to obtain sharp, that is, two-sided estimates of convergence rates. The proofs are based on results in interpolation theory of linear operators. This monograph will be of value to professional mathematicians as well as advanced students interested in the fields of functional analysis and partial differential equations.

Inhalt
1 The Abstract Cauchy Problem.- 1. Well-Posedness of the Differential Cauchy Problem in C(E).- 2. Well-Posedness of the Cauchy Problem inC0?(E).- 3. Well-Posedness of the Cauchy Problem in Lp(E).- 4. Well-Posedness of the Cauchy Problem in Lp(E?,Q).- 5. Well-Posedness of the Cauchy Problem in Spaces of Smooth Functions.- 2 The Rothe Difference Scheme.- 0. Stability of the Difference Problem.- 1. Well-Posedness of the Difference Problem in C(E).- 2. Well-Posedness of the Difference Problem in C0?(E).- 3. Well-Posedness of the Difference Problem in Lp(E).- 4. Well-Posedness of the Difference Problem in Lp(E?,Q).- 5. Well-Posedness of the Difference Problem in Difference Analogues of Spaces of Smooth Functions.- 3 PadÉ Difference Schemes.- 0. Stability of the Difference Problem.- 1. Well-Posedness of the Difference Problem in C(E).- 2. Well-Posedness of the Difference Problem in C0?(E).- 3. Well-Posedness of the Difference Problem in Lp(E).- 4. Well-Posedness of the Difference Problem in Lp(E'?,Q).- 5. Well-Posedness of the Difference Problem in Difference Analogues of Spaces of Smooth Functions.- 4 Difference Schemes for Parabolic Equations.- 1. Elliptic Difference Operators with Constant Coefficients.- 2. Fractional Spaces in the case of an Elliptic Difference Operator.- 3. Stability and Coercivity Estimates.- Comments on the Literature.- References.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783034896610
    • Übersetzer A. Iacob
    • Sprache Englisch
    • Größe H244mm x B170mm x T20mm
    • Jahr 2012
    • EAN 9783034896610
    • Format Kartonierter Einband
    • ISBN 3034896611
    • Veröffentlichung 29.10.2012
    • Titel Well-Posedness of Parabolic Difference Equations
    • Autor A. Ashyralyev , P. E. Sobolevskii
    • Untertitel Operator Theory: Advances and Applications 69
    • Gewicht 635g
    • Herausgeber Birkhäuser
    • Anzahl Seiten 368
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38